Singhgizroek, ndaw ranz daeuj haujlai vunzhek. Daxmeh gyau hawj gou aen yinvu he——bae hawbyaek cawx bya.
Ndaw hawbyaek vunz lai vunz daih, nauhyied dangqmaz. Gou caenx haeuj baihnaj dan gai bya bae, raen boh’au Cangh cingq gai bya.
Gou naeuz:“Au Cangh, meh gou ciengz youq mwngz gizneix cawx bya. Ngoenzneix daxmeh mbouj ndaejhoengq, heuh gou daeuj cawx bya, mwngz gai hawj gou cienh di bw.”
Au Cangh riuhaha naeuz: “Nienzgeij iqet couh rox gangj- gyaq. Ndaej ha, hawj mwngz aen gihvei he!” De dawz swx bya cuengq hwnj gwnz caengh bae, naeuz: “Swx bya neix lienz bya daiq swx naek 14 ciengwz, aen bouqlaeuj he cawx bya bae buenq he, haxbaenh mehsimj he youh cawx gij bya lw roengz haenx bae buenq he, seizneix bya caeuq swx naek 5 ciengwz. Mwngz suenq ndaej ok ndaw swx lij miz geijlai ciengwz bya, gou couh gai gyaqcienz ceiq daemq hawj mwngz!”
Gou dwg boux vunz mbouj fug saw he, gou sikhaek doengh’uk naemj.
14 ciengwz caeuq 5 cien- gwz cungj bauhamz aenswx naek, ndaej suenq ok gaenq gai 14-5=9 (ciengwz) bya. Yienz- haeuh fanj gvaqdaeuj siengj, aeu gij bya ndaw swx seizneix yawj guh 1 faenh, mehsimj cawx bae haenx hix dwg 1 faenh; mehsimj daeuj gaxgonq couh dwg 2 faenh, gig cingcuj bouq- laeuj cawx bae haenx hix dwg 2 faenh. Ndigah, bya ndaw swx yienzlaiz couh dwg 4 faenh, gaenq gai ok le 3 faenh.
Siengj daengz neix, gou angq dwk naeuz:“Gou suenq ndaej okdaeuj lo, seizneix ndaw swx lij lw 9÷3=3 (ciengwz) bya, aen swx neix dwg 5-3=2 (ciengwz)!”
Au Cangh yaengx meh- fwngz coh gou naeuz: “Mwngz caen ak ha! Ndei, gou gai ceiq cienh hawj mwngz……”
Gou hawj cienz le, angq- vauvau ma ranz caeuq daxmeh “iu goeng” lo.
(seiq nienzgaep Cangh Sijsenh)