Lingzlwg Coengcoeng vaiqvet bin hwnj go faex hung he, yawj coh gizgyae, angq dwk naeuz:“Daih- vuengz dauqma lo!”
Lingzlwg Lingzlingz gaeugaeu aen’gyaeuj, naeuz:“Daihvuengz coengmingz gvaq vunz, sam bi gaxgonq bae byasien baiq saefouh hag bonjsaeh, seizneix haengjdingh engq ak lo! Raeuz daeuj gaujgauj de, yawj daihvuengz seizneix bonjsaeh baenz- lawz yiengh.”
Goenglingz lumhlumh hangz mumhhau de naeuz: “Gou daeuj ok diuz daez he, (24-3x)÷6=……”
Lingzlingz sing hung naeuz: “Ndaej daengj 1.”
Lingzlwg Mingzmingz ciepdwk naeuz: “Lij dwg daengj 2 ba.”
Coengcoeng daj gwnz faex rod roengzdaeuj, naeuz: “Gou siengj hawj aen soq neix daengj 3.”
Goenglingz riuhaha naeuz: “Cungj ndaej! Hawj daihvuengz siengjsiengj, dang diuz suenqsik neix ndaej soq baenbied dwg 1、2、3 seiz, x baenbied dwg geijlai.”
Lingzlingz nyaeuq bwnda naeuz: “Raeuz daeuj siengjsiengj gij giuj- miuh ndawde gonq, yienghneix caj yaep he dingq daihvuengz hoizdap le, raeuz cijndaej ndawsim miz soq. Gou sien daeuj naemj dang (24-3x)÷6 daengj 1 seiz, x daengj geijlai. Yienghneix aen suenqsik neix wnggai sien suenq swngzfap, caiq suenq gemjfap. Doeklaeng suenq cawzfap. Yaek siengj rox x ndaej geijlai, couh fanj gvaqdaeuj doisuenq, couh dwg cawzfap → gemjfap → swngzfap. Sien siengj □÷6=1, ndaejdaengz 24-3x=6; caiq siengj 24-□=6, ndaejdaengz 3x=18; doeklaeng couh suenq ndaej ok x=6.”
Goenglingz riunyumj naeuz: “Deng lo, neix cingq dwg yungh le fap ‘dauqdoi’ daeuj gej daez.”
Mingzmingz nyeng aen’gyaeuj siengjsiengj le, naeuz: “Gou hix yungh ‘dauqdoi’ cungj fap neix, hawj aen vwndiz daihngeih ra daengz dapanq. Aeu yinhsuenq swnh gonqlaeng ndaw daez dauj gvaqdaeuj doisuenq, (24-3x)÷6=2, (24-3x) dwg 12; ciepdwk 24-3x=12, 3x dwg 12; doeklaeng 3x=12, x=4.”
Goenglingz riunyumnyum lumh aen’gyaeuj mingzmingz naeuz: “Fuengfap mingzmingz sengdoengh hingzsiengq, caen ndei!”
Seizneix, daihvuengz caij gij fwj haj saek daj gwnz mbwn mbin roengzdaeuj, riu dwk cam naeuz: “Sou cingq gangjsebseb gijmaz ha?” Daihgya sikhaek humx hwnjbae……
(Lij Cilungz)